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Abstract 
The main aim of this paper to introduce a new notation 𝐺 − 𝑓𝑔 − contraction and a new edge preserving property. With help of this 
proved a coupled coincidence fixed point theorem for four maps with a graph in a metric space. 
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INTRODUCTION 
In 2006, the concepts of fixed point theory and graph theory 

were combined by Espinola and Kirk ([3]). Jachymski([4]) and 

Chifu ([2]) came up with an interesting idea of using the 

language of graph theory in the study of fixed point results.  

A graph is an ordered pair 𝐺 = (𝑉, 𝐸), where 𝑉 is a non empty 

set and the elements in 𝑉 are called vertices or nodes and 𝐸 is 

a binary relation on V. i.e., 𝐸 ⊆ (𝑉 × 𝑇). The elements of 𝐸 are 

called edges. 

In this paper we concentrate on directed graphs. 

Let 𝐺−1 be the conversion of the graph 𝐺. i.e., the graph 

obtained from 𝐺 by reversing the direction of edges. Simply, 

𝐸(𝐺−1) = {(𝑦, 𝑥): (𝑥, 𝑦) ∈ 𝐸(𝐺)}. 

A directed graph 𝐺 is called a oriented graph if (𝑥, 𝑦) ∈ 𝐸(𝐺), 

then (𝑦, 𝑥) ∉ 𝐸(𝐺). 

Definition 1.1 [2] A function 𝑆: 𝑋 × 𝑋 → 𝑋 is said to be 𝐺 − 

continuous if {𝑥𝑛𝑖
} → 𝑝 , {𝑦𝑛𝑖

} → 𝑞 and (𝑥𝑛𝑖
, 𝑥𝑛𝑖+1

) ∈ 𝐸(𝐺), 

(𝑦𝑛𝑖
, 𝑦𝑛𝑖+1

) ∈ 𝐸(𝐺−1) implies 𝑆(𝑥𝑛𝑖
, 𝑥𝑛𝑖+1

) → 𝑆(𝑝, 𝑞) and 

𝑆(𝑦𝑛𝑖
, 𝑦𝑛𝑖+1

) → 𝑆(𝑞, 𝑝) as 𝑖 → ∞, where (𝑥, 𝑦), (𝑝, 𝑞) ∈ 𝑋 × 𝑋 

and (𝑛𝑖)𝑖∈𝑁 be a sequence of positive integers. 

Definition 1.2 [2]) Let (𝑋, 𝑑) be a complete metric space 

endowed with a directed graph G. Then the triplet (𝑋, 𝑑, 𝐺) has 

property (𝐴) if 

(𝑖) for any sequence {𝑥𝑛}𝑛∈𝑁 in 𝑋 such that {𝑥𝑛} → 𝑝 and 

(𝑥𝑛 , 𝑥𝑛+1) ∈ 𝐸(𝐺) implies (𝑥𝑛, 𝑝) ∈ 𝐸(𝐺) 

(𝑖𝑖) for any sequence {𝑦𝑛}𝑛∈𝑁 in 𝑋 such that {𝑦𝑛} → 𝑞 and 

(𝑦𝑛 , 𝑦𝑛+1) ∈ 𝐸(𝐺−1) implies (𝑦𝑛 , 𝑞) ∈ 𝐸(𝐺−1). 

Many authors studied about the coupled fixed points and 

coupled coincident points and common coupled fixed points 

and the 𝐺- continuous properties (see [2], [19], [15], [7]) By 

taking the inspiration from the above authors G. Adilakshmi 

and G.N.V. Kishore([1]) introduced a 𝐺 − 𝑓𝑔 contraction on 

metric space endowed with a graph for four mappings. 

Definition 1.3 ([1]) Suppose (𝑋, 𝑑) be a metric space endowed 

with a directed graph 𝐺. Let us consider the mappings 

𝑆, 𝑇: 𝑋 × 𝑋 → 𝑋 and 𝑓, 𝑔: 𝑋 → 𝑋 with defining the following sets 

(𝐼) (𝑋 × 𝑋)𝑆𝑓 = {(𝑥, 𝑦) ∈ 𝑋 × 𝑋: (𝑓𝑥, 𝑆(𝑥, 𝑦)) ∈

𝐸(𝐺), (𝑓𝑦, 𝑆(𝑦, 𝑥)) ∈ 𝐸(𝐺−1)} 

and (𝑖) 𝑓 is edge preserving. i.e., (𝑓𝑥, 𝑓𝑢) ∈ 𝐸(𝐺), (𝑓𝑦, 𝑓𝑣) ∈

𝐸(𝐺−1)  

implies (𝑓(𝑓𝑥), 𝑓(𝑓𝑢)) ∈ 𝐸(𝐺) and (𝑓(𝑓𝑦), 𝑓(𝑓𝑣)) ∈ 𝐸(𝐺−1). 

(𝑖𝑖) 𝑆 is 𝑓 edge preserving. i.e., (𝑓𝑥, 𝑓𝑢) ∈ 𝐸(𝐺), (𝑓𝑦, 𝑓𝑣) ∈

𝐸(𝐺−1)  

implies (𝑆(𝑥, 𝑦), 𝑆(𝑢, 𝑣)) ∈ 𝐸(𝐺) and (𝑆(𝑦, 𝑥), 𝑆(𝑣, 𝑢)) ∈

𝐸(𝐺−1). 

 (𝐼𝐼) (𝑋 × 𝑋)𝑇𝑔 = {(𝑢, 𝑣) ∈ 𝑋 × 𝑋: (𝑔𝑢, 𝑇(𝑢, 𝑣)) ∈

𝐸(𝐺), (𝑔𝑣, 𝑇(𝑣, 𝑢)) ∈ 𝐸(𝐺−1)} 

and (𝑖) 𝑔 is edge preserving. i.e., (𝑔𝑥, 𝑔𝑢) ∈ 𝐸(𝐺), (𝑔𝑦, 𝑔𝑣) ∈

𝐸(𝐺−1)  

implies (𝑔(𝑔𝑥), 𝑔(𝑔𝑢)) ∈ 𝐸(𝐺) and (𝑔(𝑔𝑦), 𝑔(𝑔𝑣)) ∈ 𝐸(𝐺−1). 

(𝑖𝑖) 𝑇 is 𝑔 edge preserving. i.e., (𝑔𝑥, 𝑔𝑢) ∈ 𝐸(𝐺), (𝑔𝑦, 𝑔𝑣) ∈

𝐸(𝐺−1)  

implies (𝑇(𝑥, 𝑦), 𝑇(𝑢, 𝑣)) ∈ 𝐸(𝐺) and (𝑇(𝑦, 𝑥), 𝑇(𝑣, 𝑢)) ∈

𝐸(𝐺−1). 

(𝐼𝐼𝐼) (𝑋 × 𝑋)𝑆𝑇
𝑓𝑔

= (𝑋 × 𝑋)𝑆𝑓 ∩ (𝑋 × 𝑋)𝑇𝑔 

𝑆𝑇 are said to be 𝐺 − 𝑓𝑔 contraction if 

(𝑖) 𝑓, 𝑔 are edge preserving respectively. i.e., (𝑓𝑥, 𝑔𝑢) ∈

𝐸(𝐺), (𝑓𝑦, 𝑔𝑣) ∈ 𝐸(𝐺−1)  

implies (𝑓(𝑓𝑥), 𝑔(𝑔𝑢)) ∈ 𝐸(𝐺) and (𝑓(𝑓𝑦), 𝑔(𝑔𝑣)) ∈ 𝐸(𝐺−1). 

(𝑖𝑖) 𝑆, 𝑇 are 𝑓𝑔 −edge preserving. i.e., (𝑓𝑥, 𝑔𝑢) ∈

𝐸(𝐺), (𝑓𝑦, 𝑔𝑣) ∈ 𝐸(𝐺−1)  

implies (𝑆(𝑥, 𝑦), 𝑇(𝑢, 𝑣)) ∈ 𝐸(𝐺) and (𝑆(𝑦, 𝑥), 𝑇(𝑣, 𝑢)) ∈

𝐸(𝐺−1) 
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(iii) for all 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑋 and for (𝑓𝑥, 𝑔𝑢), (𝑆(𝑥, 𝑦), 𝑇(𝑢, 𝑣)) ∈

𝐸(𝐺)  

And      (𝑓𝑦, 𝑔𝑣), (𝑆(𝑦, 𝑥), 𝑇(𝑣, 𝑢)) ∈ 𝐸(𝐺−1) 

 

𝑑(𝑆(𝑥, 𝑦), 𝑇(𝑢, 𝑣)) 

≤ max {𝜅(𝜓(𝑓𝑥, 𝑔𝑢)), 𝜅 (𝜓(𝑆(𝑥, 𝑦), 𝑇(𝑢, 𝑣)))} 

            [𝜓(𝑓𝑥, 𝑔𝑢) − 𝜓(𝑆(𝑥, 𝑦), 𝑇(𝑢, 𝑣))] 

              −max {𝜅(𝜙(𝑓𝑦, 𝑔𝑣)), 𝜅 (𝜙(𝑆(𝑦, 𝑥), 𝑇(𝑣, 𝑢)))} 

              [𝜙(𝑓𝑦, 𝑔𝑣) − 𝜓(𝑆(𝑦, 𝑥), 𝑇(𝑣, 𝑢))] 

where 𝜓, 𝜙: 𝑋 × 𝑋 → [0, ∞) are lower semi continuous 

functions. 

Theorem 1.4  Let 𝑆, 𝑇: 𝑋 × 𝑋 → 𝑋 and 𝑓, 𝑔: 𝑋 → 𝑋. Suppose 

that 𝑆, 𝑇 are 𝑓𝑔-edge preserving and satisfies 𝐺 − 𝑓𝑔 

contraction.  

Let 𝑆(𝑋 × 𝑋) ⊆ 𝑓(𝑋) and 𝑇(𝑋 × 𝑋) ⊆ 𝑔(𝑋). Also let 

{𝑥2𝑛},{𝑦2𝑛},{𝑢2𝑛} and {𝑣2𝑛} be sequences in the metric space 

(𝑋, 𝑑) endowed with a directed graph 𝐺. Then the following 

statements are true. 

 (𝑖) (𝑓𝑥, 𝑔𝑢) ∈ 𝐸(𝐺) and (𝑓𝑦, 𝑔𝑣) ∈ 𝐸(𝐺−1) implies  

(𝑆(𝑥2𝑛 , 𝑦2𝑛), 𝑇(𝑢2𝑛+1, 𝑣2𝑛+1)) ∈ 𝐸(𝐺)  

and (𝑆(𝑦2𝑛, 𝑥2𝑛), 𝑇(𝑣2𝑛+1, 𝑢2𝑛+1)) ∈ 𝐸(𝐺−1) , ∀𝑛 ∈ 𝑁; 

 (𝑖𝑖) (𝑥, 𝑦) ∈ (𝑋 × 𝑋)𝑆𝑇
𝑓𝑔

⇒ (𝑥2𝑛+1, 𝑦2𝑛+1) ∈ (𝑋 × 𝑋)𝑆𝑇
𝑓𝑔

,∀𝑛 ∈ 𝑁 ;  

 (𝑖𝑖𝑖) {Ω2𝑛} and {𝜂2𝑛} are cauchy sequences and there exists 

𝑥∗, 𝑦∗ ∈ 𝑋 such that Ω2𝑛 → 𝑥∗ and 𝜂2𝑛 → 𝑦∗.   

Theorem 1.5  In addition to 1.4, assume that 𝑓, 𝑔 are 𝐺- 

continuous and (𝑖) 𝑓 commutes with 𝑆 and 𝑔 commutes with 𝑇 

[𝑜𝑟]  (𝑖𝑖) (𝑋, 𝑑, 𝐺) has the property (𝐴) 

Then 𝐶𝐶𝑜𝑖𝑛(𝑆𝑇
𝑓𝑔

) ≠ 𝜙 iff (𝑋 × 𝑋)𝑆𝑇
𝑓𝑔

≠ 𝜙.   

Theorem 1.6  Suppose that hypothesis of 1.5 holds. Besides, let 

for every (𝑎∗, 𝑏∗), (𝑐∗, 𝑑∗) ∈ (𝑋 × 𝑋), there exists (𝑢, 𝑣) ∈
(𝑋 × 𝑋) 

 such that  

 (𝑆(𝑎∗, 𝑏∗), 𝑇(𝑢, 𝑣)) ∈ 𝐸(𝐺) , (𝑆(𝑏∗, 𝑎∗), 𝑇(𝑣, 𝑢)) ∈ 𝐸(𝐺−1) and  

(𝑆(𝑐∗, 𝑑∗), 𝑇(𝑢, 𝑣)) ∈ 𝐸(𝐺) , (𝑆(𝑑∗, 𝑐∗), 𝑇(𝑣, 𝑢)) ∈ 𝐸(𝐺−1) 

Also 

(𝑆(𝑢, 𝑣), 𝑇(𝑎∗, 𝑏∗)) ∈ 𝐸(𝐺) , (𝑆(𝑣, 𝑢), 𝑇(𝑏∗, 𝑎∗)) ∈ 𝐸(𝐺−1) and  

(𝑆(𝑢, 𝑣), 𝑇(𝑐∗, 𝑑∗)) ∈ 𝐸(𝐺) , (𝑆(𝑣, 𝑢), 𝑇(𝑑∗, 𝑐∗)) ∈ 𝐸(𝐺−1). 

Then 𝑆, 𝑇, 𝑓 and 𝑔 have a unique CCFP.  

Now we prove our main results.  

RESULTS AND DISCUSSIONS 
Definition 2.1 Let 𝑓, 𝑔: 𝑋 → 𝑋. The two mappings 𝑆, 𝑇: 𝑋 × 𝑋 →

𝑋 are said to be 𝐺 − (𝑓𝑔)1 contraction if 

(𝑖) 𝑓, 𝑔 are edge preserving respectively. i.e., (𝑓𝑥, 𝑔𝑢) ∈

𝐸(𝐺), (𝑓𝑦, 𝑔𝑣) ∈ 𝐸(𝐺−1)  

 implies (𝑓(𝑓𝑥), 𝑔(𝑔𝑢)) ∈ 𝐸(𝐺) and (𝑓(𝑓𝑦), 𝑔(𝑔𝑣)) ∈ 𝐸(𝐺−1) 

 (𝑖𝑖) 𝑆, 𝑇 are 𝑓𝑔 −edge preserving. i.e., (𝑓𝑥, 𝑔𝑢) ∈

𝐸(𝐺), (𝑓𝑦, 𝑔𝑣) ∈ 𝐸(𝐺−1)  

implies (𝑆(𝑥, 𝑦), 𝑇(𝑢, 𝑣)) ∈ 𝐸(𝐺) and (𝑆(𝑦, 𝑥), 𝑇(𝑣, 𝑢)) ∈

𝐸(𝐺−1) 

(𝑖𝑖𝑖) 𝑑(𝑆(𝑥, 𝑦), 𝑇(𝑢, 𝑣)) ≤
𝑘

2
[𝑑((𝑓𝑥, 𝑔𝑢)) + 𝑑((𝑓𝑦, 𝑔𝑣))], 𝑘 ∈

[0,
1

2
) is contraction constant of 𝑆𝑇, where (𝑓𝑥, 𝑔𝑢) ∈

𝐸(𝐺), (𝑓𝑦, 𝑔𝑣) ∈ 𝐸(𝐺−1) for all 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑋.  

Theorem 2.1  Let 𝑆, 𝑇: 𝑋 × 𝑋 → 𝑋 and 𝑓, 𝑔: 𝑋 → 𝑋. Suppose 

that 𝑆, 𝑇 are 𝑓𝑔-edge preserving and satisfies 𝐺 − (𝑓𝑔)1 

contraction.  

Let 𝑆(𝑋 × 𝑋) ⊆ 𝑓(𝑋) and 𝑇(𝑋 × 𝑋) ⊆ 𝑔(𝑋). Also let 

{𝑥2𝑛},{𝑦2𝑛},{𝑢2𝑛} and {𝑣2𝑛} be sequences in the metric space 

(𝑋, 𝑑) endowed with a directed graph 𝐺. Then the following 

statements are true. 

 (𝑖) (𝑓𝑥, 𝑔𝑢) ∈ 𝐸(𝐺) and (𝑓𝑦, 𝑔𝑣) ∈ 𝐸(𝐺−1) implies  

(𝑆(𝑥2𝑛 , 𝑦2𝑛), 𝑇(𝑢2𝑛+1, 𝑣2𝑛+1)) ∈ 𝐸(𝐺) and 

(𝑆(𝑦2𝑛 , 𝑥2𝑛), 𝑇(𝑣2𝑛+1, 𝑢2𝑛+1)) ∈ 𝐸(𝐺−1) , ∀𝑛 ∈ 𝑁; 

 (𝑖𝑖) (𝑥, 𝑦) ∈ (𝑋 × 𝑋)𝑆𝑇
𝑓𝑔

⇒ (𝑥2𝑛+1, 𝑦2𝑛+1) ∈ (𝑋 × 𝑋)𝑆𝑇
𝑓𝑔

,∀𝑛 ∈ 𝑁 ;  

 (𝑖𝑖𝑖) {𝑍2𝑛} and {𝑊2𝑛} are cauchy sequences and there exists 

𝑥∗, 𝑦∗ ∈ 𝑋 such that Ω2𝑛 → 𝑥∗ and 𝜂2𝑛 → 𝑦∗ 

Proof:  We have 𝑆(𝑋 × 𝑋) ⊆ 𝑔(𝑋) and 𝑇(𝑋 × 𝑋) ⊆ 𝑓(𝑋) so let 

us define the following sequences  

                            

𝑧2𝑛 = 𝑔𝑥2𝑛+1 = 𝑆(𝑥2𝑛, 𝑦2𝑛),

𝑤2𝑛 = 𝑔𝑦2𝑛+1 = 𝑆(𝑦2𝑛 , 𝑥2𝑛),

𝑧2𝑛+1 = 𝑓𝑥2𝑛+2 = 𝑇(𝑥2𝑛+1, 𝑦2𝑛+1),

𝑤2𝑛+1 = 𝑓𝑦2𝑛+2 = 𝑇(𝑦2𝑛+1, 𝑥2𝑛+1),        𝑛 = 0,1,2, ⋯ .

 

the rest of the proof followed  Theorem1 conditions (i) and (ii) 

proof. 

Theorem 2.2  Let (𝑋, 𝑑) be a metric space endowed with a 

directed graph G. Let 𝑆, 𝑇: 𝑋 × 𝑋 → 𝑋 are 𝐺 − 𝑓𝑔 −contraction 

with contraction constant 𝑘 ∈ [0,
1

2
) and 𝑆(𝑋 × 𝑋) ⊆ 𝑔(𝑋) and 

𝑇(𝑋 × 𝑋) ⊆ 𝑓(𝑋). Also suppose that (𝑥2𝑛), (𝑦2𝑛) be sequences in 

𝑋. Then, for (𝑥, 𝑦) ∈ (𝑋 × 𝑋), there exist 𝑟(𝑥, 𝑦) ≥ 0 such that 

𝑑(𝑓𝑥2𝑛 , 𝑔𝑥2𝑛+1) ≤
𝑘2𝑛−1

2
𝑟(𝑥, 𝑦) and 𝑑(𝑓𝑦2𝑛 , 𝑔𝑦2𝑛+1) ≤

𝑘2𝑛−1

2
𝑟(𝑥, 𝑦).  

Proo: . Let (𝑥, 𝑦) ∈ (𝑋 × 𝑋)𝑇𝑔 

 ⇒ (𝑔𝑥, 𝑇(𝑥, 𝑦)) ∈ 𝐸(𝐺) and (𝑔𝑦, 𝑇(𝑦, 𝑥)) ∈ 𝐸(𝐺−1) 

 ⇒ (𝑔𝑥1, 𝑇(𝑥1, 𝑦1)) ∈ 𝐸(𝐺) and (𝑔𝑦1, 𝑇(𝑦1, 𝑥1)) ∈ 

 by theorem2.1  and edge preserving property , we have 

(𝑇(𝑥2𝑛, 𝑦2𝑛), 𝑆(𝑥2𝑛+1, 𝑦2𝑛+1) ∈ 𝐸(𝐺)  

 ⇒ (𝑓𝑥2𝑛+1, 𝑔𝑥2𝑛+2) ∈ 𝐸(𝐺). 

 By  𝐺 − (𝑓𝑔)1 contraction 

𝑑(𝑓𝑥2𝑛+1, 𝑔𝑥2𝑛+2)  

          = 𝑑(𝑇(𝑥2𝑛, 𝑦2𝑛), 𝑆(𝑥2𝑛+1, 𝑦2𝑛+1)) 

          ≤
𝑘

2
[𝑑(𝑓𝑥2𝑛 , 𝑔𝑥2𝑛+1) + 𝑑(𝑓𝑦2𝑛 , 𝑔𝑦2𝑛+1)] 
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           ≤
𝑘

2
[𝑑(𝑇(𝑥2𝑛−1, 𝑦2𝑛−1), 𝑆(𝑥2𝑛, 𝑦2𝑛))

+ 𝑑(𝑇(𝑦2𝑛−1, 𝑥2𝑛−1), 𝑆(𝑦2𝑛 , 𝑥2𝑛)) 

 

≤
𝑘2

2
[𝑑(𝑓𝑥2𝑛−1, 𝑔𝑥2𝑛) + 𝑑(𝑓𝑦2𝑛−1, 𝑔𝑦2𝑛)] 

by repeating the above process, we have   

𝑑(𝑓𝑥2𝑛+1, 𝑔𝑥2𝑛+2) ≤
𝑘2𝑛

2
𝑟(𝑥, 𝑦),  

where 𝑟(𝑥, 𝑦) = 𝑑(𝑓𝑥0, 𝑔𝑥1) + 𝑑(𝑓𝑦0, 𝑔𝑦1) 

smilarlly we can prove that 

 𝑑(𝑓𝑦2𝑛+1, 𝑔𝑦2𝑛+2) ≤
𝑘2𝑛

2
𝑟(𝑥, 𝑦), where 𝑟(𝑥, 𝑦) 

      = 𝑑(𝑓𝑦0, 𝑔𝑦1) + 𝑑(𝑓𝑥0, 𝑔𝑥1). 

Theorem 2.3  Let (𝑋, 𝑑) be a complete metric space endowed 

with a directed graph G. Let 𝑆, 𝑇: 𝑋 × 𝑋 → 𝑋 are 𝐺 −

𝑓𝑔 −contraction with contraction constant 𝑘 ∈ [0,
1

2
) and 

𝑆(𝑋 × 𝑋) ⊆ 𝑔(𝑋) and 𝑇(𝑋 × 𝑋) ⊆ 𝑓(𝑋). Also let (𝑥2𝑛), (𝑦2𝑛) be 

sequences in X. Then for each (𝑥, 𝑦) ∈ (𝑋 × 𝑋) , there exists 

𝑥∗, 𝑦∗ ∈ 𝑋 such that 𝑓𝑥2𝑛 → 𝑥∗ and 𝑔𝑦2𝑛 → 𝑦∗ as 𝑛 → ∞.  

Proof:  Let (𝑥, 𝑦) ∈ (𝑋 × 𝑋)𝑇𝑔. 

Then using theorem(1.5) 

 𝑑(𝑓𝑥2𝑛+1, 𝑔𝑥2𝑛+2) ≤
𝑘2𝑛

2
𝑟(𝑥, 𝑦)  

and  

𝑑(𝑓𝑦2𝑛+1, 𝑔𝑦2𝑛+2) ≤
𝑘2𝑛

2
𝑟(𝑥, 𝑦),   

forall 𝑛 ∈ 𝑁   where 𝑘 ∈ [0,
1

2
). 

Now for 𝑚 > 𝑛, we have  

𝑑(𝑧2𝑛 , 𝑧2𝑚+1) 

= 𝑑(𝑧2𝑛 , 𝑧2𝑛+1) + 𝑑(𝑧2𝑛+1, 𝑧2𝑛+2) + ⋯ + 𝑑(𝑧2𝑚, 𝑧2𝑚+1) 

         ≤ 𝑑(𝑓𝑥2𝑛+1, 𝑔𝑥2𝑛+2) + 𝑑(𝑓𝑥2𝑛+2, 𝑔𝑥2𝑛+3) + ⋯

+ 𝑑(𝑓𝑥2𝑚+1, 𝑔𝑥2𝑚+2) 

         ≤
𝑘2𝑛

2
𝑟(𝑥, 𝑦) +

𝑘2𝑛+1

2
𝑟(𝑥, 𝑦) + ⋯ +

𝑘2𝑚

2
𝑟(𝑥, 𝑦) 

         ≤ (
𝑘2𝑛

2
+

𝑘2𝑛+1

2
+ ⋯ +

𝑘2𝑚

2
) 𝑟(𝑥, 𝑦) 

         ≤
𝑘2𝑛

2
𝑟(𝑥, 𝑦)[1 + 𝑘 + 𝑘2 + ⋯ + 𝑘2𝑚−2𝑛] 

        =
𝑘2𝑛

2
𝑟(𝑥, 𝑦) [1 −

𝑘2𝑚−2𝑛

1
− 𝑘]. 

as 𝑚, 𝑛 are large and 𝑘 ∈ [0,
1

2
) 

Therefore 𝑑(𝑧2𝑛 , 𝑧2𝑚+1) → 0 as 𝑚, 𝑛 → ∞. 

This shows that 𝑧2𝑛 is a cauchy sequence. 

Similarly we can prove that 𝑤2𝑛 is a cauchy sequence. 

Since (𝑋, 𝑑) is a complete so there exists 𝑢, 𝑣 ∈ 𝑋 such that 

𝑧2𝑛 → 𝑢 and 𝑤2𝑛 → 𝑣. 

Therefore lim
𝑛→∞

𝑧2𝑛 = 𝑢 and lim
𝑛→∞

𝑤2𝑛 = 𝑣 . 

Theorem 2.4  Suppose (𝑋, 𝑝) is complete endowed with a 

directed graph 𝐺. Let 𝑆: 𝑋 × 𝑋 → 𝑋 and 𝑇: 𝑋 × 𝑋 → 𝑋 are 

satisfies 𝐺 − 𝑓𝑔 contraction with contraction constant 𝑘 ∈ [0,
1

2
) 

and 𝑆(𝑋 × 𝑋) ⊆ 𝑓(𝑋) , 𝑇(𝑋 × 𝑋) ⊆ 𝑔(𝑋). Let 𝑓 is 𝐺 continuous 

and commutes with 𝑆 and 𝑔 is 𝐺 continuous and commutes with 

𝑇.Also,assume either  

(𝑖) 𝑆, 𝑇 are 𝐺 continuous  (𝑖𝑖) (𝑋, 𝑝, 𝐺) has the property (𝐴) 

Then 𝐶𝐶𝑜𝑖𝑛(𝑆𝑓) ≠ 𝜙 iff (𝑋 × 𝑋)𝑆𝑓 ≠ 𝜙 and 𝐶𝐶𝑜𝑖𝑛(𝑇𝑔) ≠ 𝜙 iff 

(𝑋 × 𝑋)𝑇𝑔 ≠ 𝜙.  

Proof:  Suppose 𝐶𝐶𝑜𝑖𝑛(𝑆𝑓) ≠ 𝜙, 

 Then there exists (𝑢, 𝑣) ∈ 𝐶𝐶𝑜𝑖𝑛(𝑆𝑓). 

i.e., 𝑓𝑢 = 𝑆(𝑢, 𝑣) and 𝑓𝑣 = 𝑆(𝑣, 𝑢). 

 So (𝑓𝑢, 𝑓𝑢) = (𝑓𝑢, 𝑆(𝑢, 𝑣)) ∈ 𝐸(𝐺)  

and (𝑓𝑣, 𝑓𝑣) = (𝑓𝑣, 𝑆(𝑣, 𝑢)) ∈ 𝐸(𝐺−1) 

 ⇒ (𝑢, 𝑣) ∈ (𝑋 × 𝑋)𝑆𝑓 

 ⇒ (𝑋 × 𝑋)𝑆𝑓 ≠ 𝜙. 

Next, Let us assume that (𝑋 × 𝑋)𝑆𝑓 ≠ 𝜙 . 

 Then there exists some (𝑥0, 𝑦0) ∈ (𝑋 × 𝑋)𝑆𝑓 

so we have (𝑓𝑥0, 𝑆(𝑥0, 𝑦0)) ∈ 𝐸(𝐺) and (𝑓𝑦0, 𝑆(𝑦0, 𝑥0)) ∈

𝐸(𝐺−1) 

Then by theorem (2.1), condition (𝑖𝑖), there exists a sequence 

{𝑛𝑖}𝑖∈𝑁 of positive integers such that 

(𝑆(𝑥2𝑛𝑖, 𝑦2𝑛𝑖), 𝑇(𝑥2𝑛𝑖+1, 𝑦2𝑛𝑖+1)) ∈ 𝐸(𝐺) and 

(𝑆(𝑦2𝑛𝑖 , 𝑥2𝑛𝑖), 𝑇(𝑦2𝑛𝑖+1, 𝑥2𝑛𝑖+1)) ∈ 𝐸(𝐺−1). 

Then by theorem (2.2) lim
𝑛→∞

𝑆(𝑥2𝑛𝑖, 𝑦2𝑛𝑖) → 𝑢 and 

lim
𝑛→∞

𝑇(𝑥2𝑛𝑖+1, 𝑦2𝑛𝑖+1) → 𝑣. 

Since 𝑓 is 𝐺 continuous so 

lim
𝑛→∞

𝑓(𝑆(𝑥2𝑛𝑖, 𝑦2𝑛𝑖)) → 𝑓𝑢  

and  

lim
𝑛→∞

𝑓(𝑇(𝑥2𝑛𝑖+1, 𝑦2𝑛𝑖+1)) → 𝑓𝑣. 

Since (𝑆, 𝑓) are commute so we have 𝑓(𝑆(𝑥2𝑛𝑖 , 𝑦2𝑛𝑖)) =

𝑆(𝑓𝑥2𝑛𝑖, 𝑓𝑦2𝑛𝑖). and 𝑓(𝑆(𝑦2𝑛𝑖 , 𝑥2𝑛𝑖)) = 𝑆(𝑓𝑦2𝑛𝑖 , 𝑓𝑥2𝑛𝑖) 

 Now  

lim
𝑛→∞

𝑓(𝑆(𝑥2𝑛𝑖, 𝑦2𝑛𝑖)) = 𝑆 lim
𝑛→∞

(𝑓𝑥2𝑛𝑖, 𝑓𝑦2𝑛𝑖) 

⇒ 𝑓𝑢 = 𝑆(𝑢, 𝑣) 

Similarlly , 

lim
𝑛→∞

𝑓(𝑆(𝑦2𝑛𝑖, 𝑥2𝑛𝑖)) = 𝑆 lim
𝑛→∞

(𝑓𝑦2𝑛𝑖, 𝑓𝑥2𝑛𝑖) 

⇒ 𝑓𝑣 = 𝑆(𝑣, 𝑢) 

In the same way we can prove that 𝑔𝑢 = 𝑇(𝑢, 𝑣) and 𝑔𝑣 =

𝑇(𝑣, 𝑢). 

This shows that (𝑢, 𝑣) is the coupled coincidence point 𝑆, 𝑇, 𝑓 

and 𝑔. 

Next assume that (𝑋, 𝑝, 𝐺) satisfies property (𝐴). 
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 Since 𝑇(𝑥2𝑛𝑖+1, 𝑦2𝑛𝑖+1) → 𝑢 as 𝑖 → ∞ and 𝑇(𝑦2𝑛𝑖+1, 𝑥2𝑛𝑖+1) → 𝑣 

as 𝑖 → ∞  

 also (𝑆(𝑥2𝑛𝑖, 𝑦2𝑛𝑖), 𝑇(𝑥2𝑛𝑖+1, 𝑦2𝑛𝑖+1)) ∈ 𝐸(𝐺)  

and (𝑆(𝑦2𝑛𝑖, 𝑥2𝑛𝑖), 𝑇(𝑦2𝑛𝑖+1, 𝑥2𝑛𝑖+1)) ∈ 𝐸(𝐺−1) 

so by property (𝐴) (𝑆(𝑥2𝑛𝑖 , 𝑦2𝑛𝑖), 𝑢) ∈ 𝐸(𝐺) and 

(𝑆(𝑦2𝑛𝑖 , 𝑥2𝑛𝑖), 𝑣) ∈ 𝐸(𝐺−1). 

Now 

𝑑(𝑓𝑢, 𝑆(𝑢, 𝑣)) 

= 𝑑(𝑓𝑢, 𝑓(𝑆(𝑥2𝑛𝑖, 𝑦2𝑛𝑖))) + 𝑑(𝑓(𝑆(𝑥2𝑛𝑖 , 𝑦2𝑛𝑖), 𝑆(𝑢, 𝑣))  =

𝑑 (𝑓(𝑇(𝑥2𝑛𝑖+1, 𝑦2𝑛𝑖+1)), 𝑓(𝑆(𝑥2𝑛𝑖 , 𝑦2𝑛𝑖))) 

        +𝑑(𝑓(𝑆(𝑥2𝑛𝑖 , 𝑦2𝑛𝑖), 𝑆(𝑢, 𝑣)) 

≤ 𝑑(𝑇(𝑥2𝑛𝑖+1, 𝑦2𝑛𝑖+1), 𝑆(𝑥2𝑛𝑖, 𝑦2𝑛𝑖))

+ 𝑑(𝑆(𝑓𝑥2𝑛𝑖 , 𝑓𝑦2𝑛𝑖), 𝑆(𝑢, 𝑣)) 

≤
𝑘

2
[𝑑(𝑓𝑥2𝑛𝑖+1, 𝑔𝑥2𝑛𝑖+1) + 𝑑(𝑓𝑦2𝑛𝑖+1, 𝑔𝑦2𝑛𝑖+1)] 

        +𝑑(𝑆(𝑓𝑥2𝑛𝑖, 𝑓𝑦2𝑛𝑖), 𝑆(𝑢, 𝑣))  

Since 𝑘 ∈ [0,
1

2
),As 𝑖 → ∞, 

𝑑(𝑓𝑢, 𝑆(𝑢, 𝑣)) =
𝑘

2
[𝑑(𝑢, 𝑢) + 𝑑(𝑣, 𝑣)] + 𝑑(𝑆(𝑢, 𝑣), 𝑆(𝑢, 𝑣)) = 0. 

Therefore 𝑓𝑢 = 𝑆(𝑢, 𝑣). Similarly we can prove that 𝑓𝑣 =

𝑆(𝑣, 𝑢). 

In this way we can prove that 𝑔𝑢 = 𝑇(𝑢, 𝑣) and 𝑔𝑣 = 𝑇(𝑣, 𝑢).  

Finally to uniqueness of the common coupled fixed point can 

be proved using theorem 3 via 𝐺 − (𝑓𝑔)1 contraction.  

Application to Integral equations 
To discuss the application of our main results we establish an 

existence theorem in a metric space with graph for the 

solution of the integral equations. 

Consider the following integral equations:  

𝑥(𝑡) = ∫
𝑇

0

𝑓(𝑡, 𝑥(𝑠), 𝑦(𝑠))𝑑𝑠,    𝑡 ∈ [0, 𝑇]

𝑦(𝑡) = ∫
𝑇

0

𝑓(𝑡, 𝑦(𝑠), 𝑥(𝑠))𝑑𝑠,    𝑡 ∈ [0, 𝑇]

 

Where 𝑇 is a positive real number and 𝑓: [0, 𝑇] × ℜ × ℜ → ℜ. 

Consider 𝑋 = 𝐶([0, 𝑇], ℜ). Define 𝑑: 𝑋 × 𝑋 → ℜ as 𝑑(𝑥, 𝑦) =

max{𝑥(𝑡), 𝑦(𝑡)}. 

Clearly 𝑑 is a metric on 𝑋. 

Define a graph 𝐺 using the following partial relation. 

𝑥 ≤ 𝑦 ⇔ 𝑥(𝑡) ≤ 𝑦(𝑡), for all 𝑥, 𝑦 ∈ 𝑋 and for any 𝑡 ∈ [0, 𝑇]. 

So, we have 

𝐸(𝐺) = {(𝑥, 𝑦) ∈ 𝑋 × 𝑋: 𝑥 ≤ 𝑦  

and 𝐸(𝐺−1) = {(𝑥, 𝑦) ∈ 𝑋 × 𝑋: 𝑦 ≤ 𝑥 

Also Δ(𝑋 × 𝑋) ⊆ 𝐸(𝐺) and (𝑋, 𝑑, 𝐺) has property (𝐴). 

Clearly (𝑋, 𝑑) is a complete metric space with a directed graph 

𝐺.  

Theorem 3.1  Suppose for the integral equation, 

(𝑖) 𝑓: [0, 𝑇] × ℜ × ℜ → ℜ is continuous; 

(𝑖𝑖) for all 𝑡 ∈ [0, 𝑇] and 𝑥, 𝑦, 𝑢, 𝑣 ∈ ℜ with 𝑥 ≤ 𝑢, 𝑣 ≤

𝑦, 𝑓(𝑡, 𝑥, 𝑦) ≤ 𝑓(𝑡, 𝑢, 𝑣);  

(𝑖𝑖𝑖) for each 𝑡 ∈ [0, 𝑇] and 𝑥, 𝑦, 𝑢, 𝑣 ∈ ℜ with 𝑥 ≤ 𝑢, 𝑣 ≤

𝑦, there exists 𝑘 ∈ [0,1) such that 

max{𝑓(𝑡, 𝑥, 𝑦), 𝑓(𝑡, 𝑢, 𝑣)} ≤
𝑘

𝑇
max{𝑥(𝑡), 𝑢(𝑡), 𝑦(𝑡), 𝑣(𝑡)}. 

(𝑖𝑣) there exists (𝑥0, 𝑦0) ∈ 𝑋 × 𝑋 such that for all 𝑡 ∈

[0, 𝑇],  

𝑥(𝑡) ≤ ∫
𝑇

0

𝑓(𝑡, 𝑥0(𝑠), 𝑦0(𝑠))𝑑𝑠,    𝑡 ∈ [0, 𝑇]

∫
𝑇

0

𝑓(𝑡, 𝑦0(𝑠), 𝑥0(𝑠))𝑑𝑠 ≤ 𝑦(𝑡),    𝑡 ∈ [0, 𝑇]

 

Then there exists at least one solution of the given 

integral equation. 

 

CONCLUSIONS: 

By defining the new 𝐺 − (𝑓𝑔)1  contraction   we obtained 

a unique common coupled fixed point for mapping and 

obtained solution of integral equation. 
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