Review Article

COUPLED FIXED POINT THEOREM FOR FOUR MAPS ON A METRIC SPACES ENDOWED WITH A GRAPH

${ }^{1}$ G.N.V. Kishore, ${ }^{2}$ G. Adilakshmi, ${ }^{3}$ CH. Ramasanyasi Rao, ${ }^{4}$ V.S. Bhagavan,
${ }^{1}$ Department of Engineering Mathematics, SRKR Engineering College, Bhimavaram - 534 204, Andhra Pradesh, India. ${ }^{2}$ Research Scholar, Koneru Lakshmaiah Education Foundation, Vaddeswaram,- 522 502, Andhra Pradesh, India
${ }^{3}$ Department of Applied Mathematics, M. V. R. Degree P. G. College, Gajuwaka, Visakhapatnam- 530026, Andhra Pradesh, India.
${ }^{4}$ Department of Mathematics, Koneru Lakshmaiah Education Foundation, Vaddeswaram-- 522 502, Andhra pradesh, India.

Received: 11.11.2019
Revised: 16.12.2019
Accepted: 19.01.2020

Abstract
The main aim of this paper to introduce a new notation $G-f g$ - contraction and a new edge preserving property. With help of this
proved a coupled coincidence fixed point theorem for four maps with a graph in a metric space.
Keywords: Metric spaces with a graph, edge preserving, coupled fixed point.
(C) 2019 by Advance Scientific Research. This is an open-access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

DOI: http://dx.doi.org/10.31838/icr.07.02.113

INTRODUCTION

In 2006, the concepts of fixed point theory and graph theory were combined by Espinola and Kirk ([3]). Jachymski([4]) and Chifu ([2]) came up with an interesting idea of using the language of graph theory in the study of fixed point results.

A graph is an ordered pair $G=(V, E)$, where V is a non empty set and the elements in V are called vertices or nodes and E is a binary relation on V. i.e., $E \subseteq(V \times T)$. The elements of E are called edges.

In this paper we concentrate on directed graphs.
Let G^{-1} be the conversion of the graph G. i.e., the graph obtained from G by reversing the direction of edges. Simply, $E\left(G^{-1}\right)=\{(y, x):(x, y) \in E(G)\}$.

A directed graph G is called a oriented graph if $(x, y) \in E(G)$, then $(y, x) \notin E(G)$.

Definition 1.1 [2] A function $S: X \times X \rightarrow X$ is said to be $G-$ continuous if $\left\{x_{n_{i}}\right\} \rightarrow p,\left\{y_{n_{i}}\right\} \rightarrow q$ and $\left(x_{n_{i}}, x_{n_{i+1}}\right) \in E(G)$, $\left(y_{n_{i}}, y_{n_{i+1}}\right) \in E\left(G^{-1}\right) \quad$ implies $\quad S\left(x_{n_{i}}, x_{n_{i+1}}\right) \rightarrow S(p, q) \quad$ and $S\left(y_{n_{i}}, y_{n_{i+1}}\right) \rightarrow S(q, p)$ as $i \rightarrow \infty$, where $(x, y),(p, q) \in X \times X$ and $\left(n_{i}\right)_{i \in N}$ be a sequence of positive integers.

Definition 1.2 [2]) Let (X, d) be a complete metric space endowed with a directed graph G. Then the triplet (X, d, G) has property (A) if
(i) for any sequence $\left\{x_{n}\right\}_{n \in N}$ in X such that $\left\{x_{n}\right\} \rightarrow p$ and $\left(x_{n}, x_{n+1}\right) \in E(G)$ implies $\left(x_{n}, p\right) \in E(G)$
(ii) for any sequence $\left\{y_{n}\right\}_{n \in N}$ in X such that $\left\{y_{n}\right\} \rightarrow q$ and $\left(y_{n}, y_{n+1}\right) \in E\left(G^{-1}\right)$ implies $\left(y_{n}, q\right) \in E\left(G^{-1}\right)$.

Many authors studied about the coupled fixed points and coupled coincident points and common coupled fixed points and the G - continuous properties (see [2], [19], [15], [7]) By taking the inspiration from the above authors G. Adilakshmi and G.N.V. Kishore([1]) introduced a $G-f g$ contraction on metric space endowed with a graph for four mappings.

Definition 1.3 ([1]) Suppose (X, d) be a metric space endowed with a directed graph G. Let us consider the mappings $S, T: X \times X \rightarrow X$ and $f, g: X \rightarrow X$ with defining the following sets
(I) $\quad(X \times X)_{s f}=\{(x, y) \in X \times X:(f x, S(x, y)) \in$ $\left.E(G),(f y, S(y, x)) \in E\left(G^{-1}\right)\right\}$
and (i) f is edge preserving. i.e., $(f x, f u) \in E(G),(f y, f v) \in$ $E\left(G^{-1}\right)$
implies $(f(f x), f(f u)) \in E(G)$ and $(f(f y), f(f v)) \in E\left(G^{-1}\right)$.
(ii) S is f edge preserving. i.e., $(f x, f u) \in E(G),(f y, f v) \in$ $E\left(G^{-1}\right)$
implies $\quad(S(x, y), S(u, v)) \in E(G) \quad$ and $\quad(S(y, x), S(v, u)) \in$ $E\left(G^{-1}\right)$.
(II) $\quad(X \times X)_{T g}=\{(u, v) \in X \times X:(g u, T(u, v)) \in$ $\left.E(G),(g v, T(v, u)) \in E\left(G^{-1}\right)\right\}$
and $(i) g$ is edge preserving. i.e., $(g x, g u) \in E(G),(g y, g v) \in$ $E\left(G^{-1}\right)$
implies $(g(g x), g(g u)) \in E(G)$ and $(g(g y), g(g v)) \in E\left(G^{-1}\right)$.
(ii) T is g edge preserving. i.e., $(g x, g u) \in E(G),(g y, g v) \in$ $E\left(G^{-1}\right)$
implies $\quad(T(x, y), T(u, v)) \in E(G) \quad$ and $\quad(T(y, x), T(v, u)) \in$ $E\left(G^{-1}\right)$.
$(I I I)(X \times X)_{S T}^{f g}=(X \times X)_{S f} \cap(X \times X)_{T g}$
$S T$ are said to be $G-f g$ contraction if
(i) f, g are edge preserving respectively. i.e., $(f x, g u) \in$ $E(G),(f y, g v) \in E\left(G^{-1}\right)$
implies $(f(f x), g(g u)) \in E(G)$ and $(f(f y), g(g v)) \in E\left(G^{-1}\right)$.
(ii) S, T are $f g$-edge preserving. i.e., $\quad(f x, g u) \in$ $E(G),(f y, g v) \in E\left(G^{-1}\right)$
implies $\quad(S(x, y), T(u, v)) \in E(G) \quad$ and $\quad(S(y, x), T(v, u)) \in$ $E\left(G^{-1}\right)$
(iii) for all $x, y, u, v \in X$ and for $(f x, g u),(S(x, y), T(u, v)) \in$ $E(G)$

And $\quad(f y, g v),(S(y, x), T(v, u)) \in E\left(G^{-1}\right)$

$$
\begin{aligned}
& d(S(x, y), T(u, v)) \\
& \leq \max \{\kappa(\psi(f x, g u)), \kappa(\psi(S(x, y), T(u, v)))\} \\
& {[\psi(f x, g u)-\psi(S(x, y), T(u, v))]} \\
& -\max \{\kappa(\phi(f y, g v)), \kappa(\phi(S(y, x), T(v, u)))\} \\
& {[\phi(f y, g v)-\psi(S(y, x), T(v, u))]}
\end{aligned}
$$

where $\psi, \phi: X \times X \rightarrow[0, \infty)$ are lower semi continuous functions.

Theorem 1.4 Let $S, T: X \times X \rightarrow X$ and $f, g: X \rightarrow X$. Suppose that S, T are $f g$-edge preserving and satisfies $G-f g$ contraction.

Let $\quad S(X \times X) \subseteq f(X) \quad$ and $\quad T(X \times X) \subseteq g(X)$. Also let $\left\{x_{2 n}\right\},\left\{y_{2 n}\right\},\left\{u_{2 n}\right\}$ and $\left\{v_{2 n}\right\}$ be sequences in the metric space (X, d) endowed with a directed graph G. Then the following statements are true.
(i) $(f x, g u) \in E(G)$ and $(f y, g v) \in E\left(G^{-1}\right)$ implies
$\left(S\left(x_{2 n}, y_{2 n}\right), T\left(u_{2 n+1}, v_{2 n+1}\right)\right) \in E(G)$
and $\left(S\left(y_{2 n}, x_{2 n}\right), T\left(v_{2 n+1}, u_{2 n+1}\right)\right) \in E\left(G^{-1}\right), \forall n \in N ;$
(ii) $(x, y) \in(X \times X)_{S T}^{f g} \Rightarrow\left(x_{2 n+1}, y_{2 n+1}\right) \in(X \times X)_{S T}^{f g}, \forall n \in N$;
(iii) $\left\{\Omega_{2 n}\right\}$ and $\left\{\eta_{2 n}\right\}$ are cauchy sequences and there exists $x^{*}, y^{*} \in X$ such that $\Omega_{2 n} \rightarrow x^{*}$ and $\eta_{2 n} \rightarrow y^{*}$.

Theorem 1.5 In addition to 1.4, assume that f, g are G continuous and (i) f commutes with S and g commutes with T [or] (ii) (X, d, G) has the property (A)

Then $\operatorname{CCoin}\binom{f g}{S T} \neq \phi$ iff $(X \times X)_{S T}^{f g} \neq \phi$.
Theorem 1.6 Suppose that hypothesis of 1.5 holds. Besides, let for every $\left(a^{*}, b^{*}\right),\left(c^{*}, d^{*}\right) \in(X \times X)$, there exists $(u, v) \in$ $(X \times X)$
such that
$\left(S\left(a^{*}, b^{*}\right), T(u, v)\right) \in E(G),\left(S\left(b^{*}, a^{*}\right), T(v, u)\right) \in E\left(G^{-1}\right)$ and
$\left(S\left(c^{*}, d^{*}\right), T(u, v)\right) \in E(G),\left(S\left(d^{*}, c^{*}\right), T(v, u)\right) \in E\left(G^{-1}\right)$
Also
$\left(S(u, v), T\left(a^{*}, b^{*}\right)\right) \in E(G),\left(S(v, u), T\left(b^{*}, a^{*}\right)\right) \in E\left(G^{-1}\right)$ and
$\left(S(u, v), T\left(c^{*}, d^{*}\right)\right) \in E(G),\left(S(v, u), T\left(d^{*}, c^{*}\right)\right) \in E\left(G^{-1}\right)$.
Then S, T, f and g have a unique CCFP.
Now we prove our main results.

RESULTS AND DISCUSSIONS

Definition 2.1 Let $f, g: X \rightarrow X$. The two mappings $S, T: X \times X \rightarrow$ X are said to be $G-(f g)_{1}$ contraction if
(i) f, g are edge preserving respectively. i.e., $(f x, g u) \in$ $E(G),(f y, g v) \in E\left(G^{-1}\right)$
implies $(f(f x), g(g u)) \in E(G)$ and $(f(f y), g(g v)) \in E\left(G^{-1}\right)$
(ii) S, T are $f g$-edge preserving. i.e., $(f x, g u) \in$ $E(G),(f y, g v) \in E\left(G^{-1}\right)$
implies $\quad(S(x, y), T(u, v)) \in E(G) \quad$ and $\quad(S(y, x), T(v, u)) \in$ $E\left(G^{-1}\right)$
(iii) $\quad d(S(x, y), T(u, v)) \leq \frac{k}{2}[d((f x, g u))+d((f y, g v))], \quad k \in$ $\left[0, \frac{1}{2}\right)$ is contraction constant of $S T$, where $(f x, g u) \in$ $E(G),(f y, g v) \in E\left(G^{-1}\right)$ for all $x, y, u, v \in X$.

Theorem 2.1 Let $S, T: X \times X \rightarrow X$ and $f, g: X \rightarrow X$. Suppose that S, T are $f g$-edge preserving and satisfies $G-(f g)_{1}$ contraction.

Let $\quad S(X \times X) \subseteq f(X)$ and $\quad T(X \times X) \subseteq g(X)$. Also let $\left\{x_{2 n}\right\},\left\{y_{2 n}\right\},\left\{u_{2 n}\right\}$ and $\left\{v_{2 n}\right\}$ be sequences in the metric space (X, d) endowed with a directed graph G. Then the following statements are true.
(i) $(f x, g u) \in E(G)$ and $(f y, g v) \in E\left(G^{-1}\right)$ implies
$\left(S\left(x_{2 n}, y_{2 n}\right), T\left(u_{2 n+1}, v_{2 n+1}\right)\right) \in E(G)$
and
$\left(S\left(y_{2 n}, x_{2 n}\right), T\left(v_{2 n+1}, u_{2 n+1}\right)\right) \in E\left(G^{-1}\right), \forall n \in N$
(ii) $(x, y) \in(X \times X)_{S T}^{f g} \Rightarrow\left(x_{2 n+1}, y_{2 n+1}\right) \in(X \times X)_{S T}^{f g}, \forall n \in N$;
(iii) $\left\{Z_{2 n}\right\}$ and $\left\{W_{2 n}\right\}$ are cauchy sequences and there exists $x^{*}, y^{*} \in X$ such that $\Omega_{2 n} \rightarrow x^{*}$ and $\eta_{2 n} \rightarrow y^{*}$

Proof: We have $S(X \times X) \subseteq g(X)$ and $T(X \times X) \subseteq f(X)$ so let us define the following sequences

$$
\begin{array}{ll}
z_{2 n} & =g x_{2 n+1}=S\left(x_{2 n}, y_{2 n}\right), \\
w_{2 n} & =g y_{2 n+1}=S\left(y_{2 n}, x_{2 n}\right), \\
z_{2 n+1} & =f x_{2 n+2}=T\left(x_{2 n+1}, y_{2 n+1}\right), \\
w_{2 n+1}=f y_{2 n+2}= & T\left(y_{2 n+1}, x_{2 n+1}\right), \quad n=0,1,2, \cdots .
\end{array}
$$

the rest of the proof followed Theorem1 conditions (i) and (ii) proof.

Theorem 2.2 Let (X, d) be a metric space endowed with a directed graph G. Let $S, T: X \times X \rightarrow X$ are $G-f g$-contraction with contraction constant $k \in\left[0, \frac{1}{2}\right)$ and $S(X \times X) \subseteq g(X)$ and $T(X \times X) \subseteq f(X)$. Also suppose that $\left(x_{2 n}\right),\left(y_{2 n}\right)$ be sequences in X. Then, for $(x, y) \in(X \times X)$, there exist $r(x, y) \geq 0$ such that $d\left(f x_{2 n}, g x_{2 n+1}\right) \leq \frac{k^{2 n-1}}{2} r(x, y) \quad$ and $\quad d\left(f y_{2 n}, g y_{2 n+1}\right) \leq$ $\frac{k^{2 n-1}}{2} r(x, y)$.

$$
\text { Proo: . Let }(x, y) \in(X \times X)_{T g}
$$

$$
\begin{aligned}
& \Rightarrow(g x, T(x, y)) \in E(G) \text { and }(g y, T(y, x)) \in E\left(G^{-1}\right) \\
& \Rightarrow\left(g x_{1}, T\left(x_{1}, y_{1}\right)\right) \in E(G) \text { and }\left(g y_{1}, T\left(y_{1}, x_{1}\right)\right) \in
\end{aligned}
$$

by theorem2.1 and edge preserving property, we have

$$
\begin{aligned}
& \left(T\left(x_{2 n}, y_{2 n}\right), S\left(x_{2 n+1}, y_{2 n+1}\right) \in E(G)\right. \\
& \quad \Rightarrow\left(f x_{2 n+1}, g x_{2 n+2}\right) \in E(G)
\end{aligned}
$$

By $G-(f g)_{1}$ contraction

$$
\begin{aligned}
& d\left(f x_{2 n+1}, g x_{2 n+2}\right) \\
& \quad=d\left(T\left(x_{2 n}, y_{2 n}\right), S\left(x_{2 n+1}, y_{2 n+1}\right)\right) \\
& \quad \leq \frac{k}{2}\left[d\left(f x_{2 n}, g x_{2 n+1}\right)+d\left(f y_{2 n}, g y_{2 n+1}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \quad \leq \frac{k}{2}\left[d\left(T\left(x_{2 n-1}, y_{2 n-1}\right), S\left(x_{2 n}, y_{2 n}\right)\right)\right. \\
& +d\left(T\left(y_{2 n-1}, x_{2 n-1}\right), S\left(y_{2 n}, x_{2 n}\right)\right)
\end{aligned}
$$

by repeating the above process, we have
$d\left(f x_{2 n+1}, g x_{2 n+2}\right) \leq \frac{k^{2 n}}{2} r(x, y)$,
where $r(x, y)=d\left(f x_{0}, g x_{1}\right)+d\left(f y_{0}, g y_{1}\right)$
smilarlly we can prove that

$$
\begin{aligned}
& d\left(f y_{2 n+1}, g y_{2 n+2}\right) \leq \frac{k^{2 n}}{2} r(x, y), \text { where } r(x, y) \\
& \quad=d\left(f y_{0}, g y_{1}\right)+d\left(f x_{0}, g x_{1}\right) .
\end{aligned}
$$

Theorem 2.3 Let (X, d) be a complete metric space endowed with a directed graph G. Let $S, T: X \times X \rightarrow X$ are $G-$ $f g$-contraction with contraction constant $k \in\left[0, \frac{1}{2}\right)$ and $S(X \times X) \subseteq g(X)$ and $T(X \times X) \subseteq f(X)$. Also let $\left(x_{2 n}\right),\left(y_{2 n}\right)$ be sequences in X. Then for each $(x, y) \in(X \times X)$, there exists $x^{*}, y^{*} \in X$ such that $f x_{2 n} \rightarrow x^{*}$ and $g y_{2 n} \rightarrow y^{*}$ as $n \rightarrow \infty$.

Proof: Let $(x, y) \in(X \times X)_{T g}$.
Then using theorem(1.5)
$d\left(f x_{2 n+1}, g x_{2 n+2}\right) \leq \frac{k^{2 n}}{2} r(x, y)$
and
$d\left(f y_{2 n+1}, g y_{2 n+2}\right) \leq \frac{k^{2 n}}{2} r(x, y)$,
forall $n \in N$ where $k \in\left[0, \frac{1}{2}\right)$.
Now for $m>n$, we have

$$
\begin{aligned}
& d\left(z_{2 n}, z_{2 m+1}\right) \\
& =d\left(z_{2 n}, z_{2 n+1}\right)+d\left(z_{2 n+1}, z_{2 n+2}\right)+\cdots+d\left(z_{2 m}, z_{2 m+1}\right) \\
& \leq d\left(f x_{2 n+1}, g x_{2 n+2}\right)+d\left(f x_{2 n+2}, g x_{2 n+3}\right)+\cdots \\
& +d\left(f x_{2 m+1}, g x_{2 m+2}\right) \\
& \leq \frac{k^{2 n}}{2} r(x, y)+\frac{k^{2 n+1}}{2} r(x, y)+\cdots+\frac{k^{2 m}}{2} r(x, y) \\
& \leq\left(\frac{k^{2 n}}{2}+\frac{k^{2 n+1}}{2}+\cdots+\frac{k^{2 m}}{2}\right) r(x, y) \\
& \leq \frac{k^{2 n}}{2} r(x, y)\left[1+k+k^{2}+\cdots+k^{2 m-2 n}\right] \\
& =\frac{k^{2 n}}{2} r(x, y)\left[1-\frac{k^{2 m-2 n}}{1}-k\right] \text {. }
\end{aligned}
$$

as m, n are large and $k \in\left[0, \frac{1}{2}\right)$
Therefore $d\left(z_{2 n}, z_{2 m+1}\right) \rightarrow 0$ as $m, n \rightarrow \infty$.
This shows that $z_{2 n}$ is a cauchy sequence.
Similarly we can prove that $w_{2 n}$ is a cauchy sequence.
Since (X, d) is a complete so there exists $u, v \in X$ such that $z_{2 n} \rightarrow u$ and $w_{2 n} \rightarrow v$.

Therefore $\lim _{n \rightarrow \infty} z_{2 n}=u$ and $\lim _{n \rightarrow \infty} w_{2 n}=v$.

Theorem 2.4 Suppose (X, p) is complete endowed with a directed graph G. Let $S: X \times X \rightarrow X$ and $T: X \times X \rightarrow X$ are satisfies $G-f g$ contraction with contraction constant $k \in\left[0, \frac{1}{2}\right)$ and $S(X \times X) \subseteq f(X), T(X \times X) \subseteq g(X)$. Let f is G continuous and commutes with S and g is G continuous and commutes with T.Also,assume either
(i) S, T are G continuous (ii) (X, p, G) has the property (A)

Then $C \operatorname{Coin}(S f) \neq \phi$ iff $(X \times X)_{S f} \neq \phi$ and $\operatorname{CCoin}(T g) \neq \phi$ iff $(X \times X)_{T g} \neq \phi$.

Proof: Suppose $\operatorname{CCoin}(S f) \neq \phi$,
Then there exists $(u, v) \in \operatorname{CCoin}(S f)$.
i.e., $f u=S(u, v)$ and $f v=S(v, u)$.

So $(f u, f u)=(f u, S(u, v)) \in E(G)$
and $(f v, f v)=(f v, S(v, u)) \in E\left(G^{-1}\right)$

$$
\begin{aligned}
& \Rightarrow(u, v) \in(X \times X)_{S f} \\
& \Rightarrow(X \times X)_{S f} \neq \phi
\end{aligned}
$$

Next, Let us assume that $(X \times X)_{S f} \neq \phi$.
Then there exists some $\left(x_{0}, y_{0}\right) \in(X \times X)_{S f}$
so we have $\left(f x_{0}, S\left(x_{0}, y_{0}\right)\right) \in E(G)$ and $\left(f y_{0}, S\left(y_{0}, x_{0}\right)\right) \in$ $E\left(G^{-1}\right)$

Then by theorem (2.1), condition (ii), there exists a sequence $\left\{n_{i}\right\}_{i \in N}$ of positive integers such that $\left(S\left(x_{2 n i}, y_{2 n i}\right), T\left(x_{2 n i+1}, y_{2 n i+1}\right)\right) \in E(G)$ and
$\left(S\left(y_{2 n i}, x_{2 n i}\right), T\left(y_{2 n i+1}, x_{2 n i+1}\right)\right) \in E\left(G^{-1}\right)$.
Then by theorem (2.2) $\lim _{n \rightarrow \infty} S\left(x_{2 n i}, y_{2 n i}\right) \rightarrow u \quad$ and $\lim _{n \rightarrow \infty} T\left(x_{2 n i+1}, y_{2 n i+1}\right) \rightarrow v$.

Since f is G continuous so
$\lim _{n \rightarrow \infty} f\left(S\left(x_{2 n i}, y_{2 n i}\right)\right) \rightarrow f u$
and
$\lim _{n \rightarrow \infty} f\left(T\left(x_{2 n i+1}, y_{2 n i+1}\right)\right) \rightarrow f v$.
Since (S, f) are commute so we have $f\left(S\left(x_{2 n i}, y_{2 n i}\right)\right)=$ $S\left(f x_{2 n i}, f y_{2 n i}\right)$. and $f\left(S\left(y_{2 n i}, x_{2 n i}\right)\right)=S\left(f y_{2 n i}, f x_{2 n i}\right)$

Now

$$
\begin{aligned}
\lim _{n \rightarrow \infty} f\left(S\left(x_{2 n i}, y_{2 n i}\right)\right) & =S \lim _{n \rightarrow \infty}\left(f x_{2 n i}, f y_{2 n i}\right) \\
\Rightarrow f u & =S(u, v)
\end{aligned}
$$

Similarlly,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} f\left(S\left(y_{2 n i}, x_{2 n i}\right)\right) & =S \lim _{n \rightarrow \infty}\left(f y_{2 n i}, f x_{2 n i}\right) \\
\Rightarrow f v & =S(v, u)
\end{aligned}
$$

In the same way we can prove that $g u=T(u, v)$ and $g v=$ $T(v, u)$.

This shows that (u, v) is the coupled coincidence point S, T, f and g.

Next assume that (X, p, G) satisfies property (A).

Since $T\left(x_{2 n i+1}, y_{2 n i+1}\right) \rightarrow u$ as $i \rightarrow \infty$ and $T\left(y_{2 n i+1}, x_{2 n i+1}\right) \rightarrow v$ as $i \rightarrow \infty$
also $\left(S\left(x_{2 n i}, y_{2 n i}\right), T\left(x_{2 n i+1}, y_{2 n i+1}\right)\right) \in E(G)$
and $\left(S\left(y_{2 n i}, x_{2 n i}\right), T\left(y_{2 n i+1}, x_{2 n i+1}\right)\right) \in E\left(G^{-1}\right)$
so by property (A) $\left(S\left(x_{2 n i}, y_{2 n i}\right), u\right) \in E(G)$ and $\left(S\left(y_{2 n i}, x_{2 n i}\right), v\right) \in E\left(G^{-1}\right)$.

Now
$d(f u, S(u, v))$
$=d\left(f u, f\left(S\left(x_{2 n i}, y_{2 n i}\right)\right)\right)+d\left(f\left(S\left(x_{2 n i}, y_{2 n i}\right), S(u, v)\right) \quad=\right.$
$d\left(f\left(T\left(x_{2 n i+1}, y_{2 n i+1}\right)\right), f\left(S\left(x_{2 n i}, y_{2 n i}\right)\right)\right)$

$$
+d\left(f\left(S\left(x_{2 n i}, y_{2 n i}\right), S(u, v)\right)\right.
$$

$$
\leq d\left(T\left(x_{2 n i+1}, y_{2 n i+1}\right), S\left(x_{2 n i}, y_{2 n i}\right)\right)
$$

$$
+d\left(S\left(f x_{2 n i}, f y_{2 n i}\right), S(u, v)\right)
$$

$\leq \frac{k}{2}\left[d\left(f x_{2 n i+1}, g x_{2 n i+1}\right)+d\left(f y_{2 n i+1}, g y_{2 n i+1}\right)\right]$

$$
+d\left(S\left(f x_{2 n i}, f y_{2 n i}\right), S(u, v)\right)
$$

Since $k \in\left[0, \frac{1}{2}\right)$,As $i \rightarrow \infty$,
$d(f u, S(u, v))=\frac{k}{2}[d(u, u)+d(v, v)]+d(S(u, v), S(u, v))=0$.

Therefore $f u=S(u, v)$. Similarly we can prove that $f v=$ $S(v, u)$.

In this way we can prove that $g u=T(u, v)$ and $g v=T(v, u)$.
Finally to uniqueness of the common coupled fixed point can be proved using theorem 3 via $G-(f g)_{1}$ contraction.

Application to Integral equations

To discuss the application of our main results we establish an existence theorem in a metric space with graph for the solution of the integral equations.

Consider the following integral equations:

$$
\begin{aligned}
& x(t)=\int_{0}^{T} f(t, x(s), y(s)) d s, \quad t \in[0, T] \\
& y(t)=\int_{0}^{T} f(t, y(s), x(s)) d s, \quad t \in[0, T]
\end{aligned}
$$

Where T is a positive real number and $f:[0, T] \times \Re \times \Re \rightarrow \mathfrak{R}$.
Consider $X=C([0, T], \Re)$. Define $d: X \times X \rightarrow \Re$ as $d(x, y)=$ $\max \{x(t), y(t)\}$.

Clearly d is a metric on X.
Define a graph G using the following partial relation.
$x \leq y \Leftrightarrow x(t) \leq y(t)$, for all $x, y \in X$ and for any $t \in[0, T]$.
So, we have
$E(G)=\{(x, y) \in X \times X: x \leq y$
and $E\left(G^{-1}\right)=\{(x, y) \in X \times X: y \leq x$
Also $\Delta(X \times X) \subseteq E(G)$ and (X, d, G) has property (A).
Clearly (X, d) is a complete metric space with a directed graph G.

Theorem 3.1 Suppose for the integral equation,
(i) $f:[0, T] \times \Re \times \Re \rightarrow \Re$ is continuous;
(ii) for all $t \in[0, T]$ and $x, y, u, v \in \Re$ with $x \leq u, v \leq$ $y, f(t, x, y) \leq f(t, u, v)$;
(iii) for each $t \in[0, T]$ and $x, y, u, v \in \Re$ with $x \leq u, v \leq$ y, there exists $k \in[0,1)$ such that $\max \{f(t, x, y), f(t, u, v)\} \leq \frac{k}{T} \max \{x(t), u(t), y(t), v(t)\}$.
(iv) there exists $\left(x_{0}, y_{0}\right) \in X \times X$ such that for all $t \in$ $[0, T]$,

$$
\begin{aligned}
& x(t) \leq \int_{0}^{T} f\left(t, x_{0}(s), y_{0}(s)\right) d s, \quad t \in[0, T] \\
& \int_{0}^{T} f\left(t, y_{0}(s), x_{0}(s)\right) d s \leq y(t), \quad t \in[0, T]
\end{aligned}
$$

Then there exists at least one solution of the given integral equation.

CONCLUSIONS:

By defining the new $G-(f g)_{1}$ contraction we obtained a unique common coupled fixed point for mapping and obtained solution of integral equation.

REFERENCES:

1. Adilakshmi.G, Kishore G.N.V and Konda Reddy.N, A new approach to common coupled fixed point of Caristi type contraction on a metric space endowed with a graph. International Journal Of Engineering And Technology 2018; Volume 7, 323-327.
2. Chifu, C, Petrusel, G. New results on coupled fixed point theory in metric spaces endowed with a directed graph. Fixed Point Theory Appl 2014, 151(2014).
3. Espinola, R, Kirk, WA. Fixed point theorems in Rtrees with applications to graph theory. Topol. Appl. 2006,153, 1046-1055.
4. Jachymski, J. The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 2008, 136(4), 1359-1373.
5. Jain M, Gupta N, Kumar, coupled fixed point theorem for $\theta-\psi$ - contractive mixed monotone mappings partially ordered metric space and application. InT journal of Analysis 2014, 9P9,
6. Karapınar E, Erhan IM, Fixed point theorems for operators on partial metric spaces. Applied Mathematics Letters 2011, 24 (11),1900-1904.
7. Kopperman R, Matthews SG, Pajoohesh H. What do partial metrics represent, Spatial representation: discrete vs. continuous computational models. Dagstuhl Seminar Proceedings, No. 04351, Internationales gegnungs - und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany 2005.
8. Susi Ari Kristina, Ni Putu Ayu Linda Permitasari. "Knowledge, Attitudes and Barriers towards Human Papillomavirus (HPV) Vaccination in Developing Economies Countries of South-East Asia Region: A Systematic Review." Systematic Reviews in Pharmacy 10.1 (2019), 81-86. Print. doi:10.5530/srp.2019.1.13
